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Conversion of graded to binary response in an activator-repressor system
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Appropriate regulation of gene expression is essential to ensure that protein synthesis occurs in a selective
manner. The control of transcription is the most dominant type of regulation mediated by a complex of
molecules such as transcription factors. In general, regulatory molecules are of two types: activator and
repressor. Activators promote the initiation of transcription whereas repressors inhibit transcription. In many
cases, they regulate the gene transcription on binding the promoter mutually exclusively and the observed gene
expression response is either graded or binary. In experiments, the gene expression response is quantified by
the amount of proteins produced on varying the concentration of an external inducer molecules in the cell. In
this paper, we study a gene regulatory network where activators and repressors both bind the same promoter
mutually exclusively. The network is modeled by assuming that the gene can be in three possible states:
repressed, unregulated, and active. An exact analytical expression for the steady-state probability distribution
of protein levels is then derived. The exact result helps to explain the experimental observations that in the
presence of activator molecules the response is graded at all inducer levels, whereas in the presence of both
activator and repressor molecules, the response is graded at low and high inducer levels and binary at an

intermediate inducer level.
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I. INTRODUCTION

Gene expression, a fundamental cellular process whereby
mRNAs and proteins are synthesized, is inherently stochastic
in nature. There is a large number of theoretical and experi-
mental studies which confirm the stochastic nature of gene
expression [1]. The stochasticity or noise in gene expression
is due to the small number of molecules involved in the
associated cellular processes. For example, the DNA mol-
ecule, which gives an organism its unique genetic identity, is
present in one or two copies per cell. The small number of
molecules taking part in the biochemical events of gene ex-
pression is responsible for the probabilistic occurrence of the
events. The stochastic nature of the biochemical events in-
troduces fluctuations around the mean mRNA and protein
levels. The fluctuations constitute noise and cause identical
copies of a gene to express at different levels. The total noise
in the gene expression level has two components: intrinsic
and extrinsic. The origin of intrinsic noise lies in the proba-
bilistic nature of the biochemical events of gene expression.
The sources of extrinsic noise are in the fluctuations in cel-
lular components such as RNAPs, ribosomes, and regulatory
molecules. The noise in gene expression may give rise to
heterogeneity in a cell population. Cell-to-cell variability is
generally attributed to genetic differences though the envi-
ronment and history are also contributing factors. Recent ex-
periments [2,3] provide evidence that stochasticity in gene
expression can contribute substantially to population hetero-
geneity and consequent variability in the cellular phenotype.
A population of cells with identical genetic sequences as well
as history and subjected to the same constant environment
can develop heterogeneities due to the random nature of gene
expression. Cellular heterogeneity has been observed in a
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variety of cell types ranging from bacteria [5] to complex
mammalian cells [6]. Several experiments combined with
theoretical studies provide important new insight on the sto-
chastic aspects of gene expression [2,3,5,7-9].

Gene expression and its regulation are of fundamental im-
portance in living organisms. There are many steps in gene
expression pathway from DNA to proteins and different
types of regulatory molecules are involved in different steps.
In general, transcriptional regulation is one of the most
dominant types of regulation. The activator and repressor
molecules are actively involved in the regulation of gene
transcription both in prokaryotes and eukaryotes. Transcrip-
tional repressors such as lac and tryptophan repressors are
well known for prokaryotic systems. Repressor molecules
inhibit the gene transcription by binding to the appropriate
region of the DNA. Eukaryotic systems are much more com-
plex and have compact chromatin structures. For the initia-
tion of transcription, remodeling of the chromatin structure is
essential so that the transcription factors and the RNA poly-
merase have access to the appropriate binding regions. Thus,
gene activation in eukaryotic system means the relief of re-
pression by the nucleosomal structure of the chromatin. After
remodeling of chromatin structure, activator protein binds
the DNA and activates gene expression. Activator protein
concentrations can be varied by varying the inducer mol-
ecules such as galactose [3].

Experiments reveal that in an individual cell the gene ex-
pression response, the amount of proteins synthesized, can
be of two types: graded and binary. In graded response pro-
tein level varies continuously with varying concentration of
external inducer molecules. In binary response, protein levels
can have two possible values: low or high. This is also
known as the all-or-none phenomenon in gene expression.
The binary response at the single-cell level gives rise to a
bimodal distribution in protein levels at the population level.
There are experimental evidences of binary responses in
gene expression with different possible origins [3,10-14].
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Becskei et al. [10] demonstrated that positive feedback with
cooperativity can generate binary response in a synthetic eu-
karyotic gene circuit but without the positive feedback the
response is graded. The presence of positive feedback loop
with cooperativity gives rise to bistability and the bistability
along with stochasticity produces binary response in protein
levels. Recently, Tan et al. [11] established that bistability
may also arise from the interplay between a noncooperative
positive feedback loop and circuit-induced growth retarda-
tion. Blake er al. [3] and Karmakar and Bose [4] showed that
fluctuations in the levels of transcription factor can give rise
to binary responses in the target gene expression in an eu-
karyotic system. Rossi ef al. [12] and Biggar and Carbtree
[13] further showed that, in certain instances, competition
between activator and repressor molecules to occupy the pro-
moter region can generate a binary response in gene expres-
sion. If the activator or repressor molecules act indepen-
dently, a graded response is obtained. The difference in the
cellular fates in binary response may be ascribed to hetero-
geneity in the distribution of the stimulus/inducer molecules
in the cell population, different histories, i.e., initial states in
the case of bistability, intracellular noise giving rise to fluc-
tuations in key parameter values, etc.

To explain the experimentally observed binary responses
in gene expression, different modeling approaches have al-
ready been proposed and analyzed using simulation and ana-
Iytical techniques. Binary response in an autocatalytic induc-
tion circuit is very common and easily understood from
different theoretical studies [15,16]. Noise can have impor-
tant role in the generation of binary responses in gene ex-
pression. It may be of purely stochastic origin [17-19]. Ke-
pler and Elston [17] demonstrated through specific examples
that only stochasticity in gene expression can give rise to
binary response, i.e., a bimodal distribution in the protein
levels. Pirone and Elston [18] showed that the slow promoter
transition in gene states is responsible for binary responses
whereas fast transitions produce graded responses. Karmakar
and Bose [19] defined the slow and fast transitions between
the active and inactive states of the gene more precisely and
established the conditions of origin of graded and binary
responses in gene expression. They derived the distribution
of protein levels assuming the random transitions between
the gene states with protein synthesis and degradation occur-
ring deterministically. Later, exact analytical distributions for
mRNAs and proteins have been derived considering all the
major steps of gene expression, i.e., transcription, translation,
and degradation, to be stochastic [20,21]. In this paper, we
propose a simple model of stochastic gene transcription
regulated by activators and repressors and show using exact
analytical calculations that bimodal distribution in protein
levels appears naturally when activators and repressors com-
pete for the binding site mutually exclusively to regulate the
gene transcription. On the other hand, a graded response is
observed when only activator molecules regulate the gene
transcription.

II. STOCHASTIC MODEL AND EXACT SOLUTION

Transcriptional regulation by activator and repressor mol-
ecules on binding the same promoter is an important regula-
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FIG. 1. (Color online) Schematic diagram of transcriptional
regulation by activator and repressor molecules where both the mol-
ecules compete for their respective binding site.

tory mechanism of gene expression in living organisms. The
activator (repressor) molecules activate (inhibit) the tran-
scription by binding the appropriate site on the promoter.
Here we consider a gene regulatory network where activators
and repressors both regulate the gene transcription mutually
exclusively [12]. This can happen in different ways and one
such way may be the overlapping binding sites on the pro-
moter (Fig. 1). Therefore, the activator and repressor mol-
ecules cannot bind the promoter simultaneously, rather they
compete for their binding sites to regulate gene transcription.
This mechanism of transcriptional regulation is represented
by a simple reaction scheme (Fig. 2) where a gene can be in
three possible states: Gy, G,, and G3. G, is the unregulated
state and G,(G;) is the repressed (activated) state of the
gene. The unregulated state of the gene which is achieved
when both the sites are empty. Activator (repressor) mol-
ecules, on binding its specific site, help in transition from the
unregulated state G, to the active (repressed) state G3(G;) of
the gene. There are random transitions taking place between
the three states of the gene. Activator and repressor mol-
ecules compete for the state G, to take control of the net-
work. If activator molecule wins, the gene turns into active
state and protein synthesis occurs with rate constant J,. Pro-
tein production does not take place from the unregulated
(G,) and repressed (G)) states of the gene. Degradation of
proteins occurs with rate constant k, and this event is inde-
pendent of the states of the gene. Here transcription and
translation are combined together into a single step as done
in earlier studies [17,19]. The stochastic transition from G,
to G3 occurs with rate constant k, and that from G, to G,
with k, (Fig. 2). The rate constants k, and k, are the func-
tions of activator and repressor molecules, respectively.
Thus, in absence of repressor (activator) molecules the tran-
sition from G, to G,(Gj3) is not possible at all. The assump-
tion that there can be three possible states of the gene pro-
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FIG. 2. Reaction scheme with the three states of the gene: re-
pressed (G), unregulated (G,), and activated (G3). From the acti-
vated state G3 proteins are synthesized with rate constant J,.
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vides the basis for the minimal model of the activator-
repressor system.

Let p;(n,1) (i=1,2,3) be the probability that at time ¢, the
gene is in the G; state with n number of protein molecules in
the system. The Master equations for the biochemical reac-
tions corresponding to the Fig. 2 are given by

5]7105:171) =kypa(n,t) —kipy(n,t) + k,[(n + D)py(n + 1,1)
~npy(n,0)], 0
&ng,t) =kpi(n,t) + kyps3(n,1) — kop,(n,t) = k,po(n,t)
+ Jo[pan=1,1) = py(n, )]+ ke [(n + Dpy(n + 1,1)
- npz(n’t)]’ (2)
apig;z,t) =kypo(n,t) — kyps(n,t) + J,,[p3(n —1,0) = p3(n.0)]
+k,,[(n+ Dps(n+1,1) —nps(n,1)]. (3)

Now the standard approach of the theory of stochastic
processes will be used to determine the steady-state probabil-
ity density function for protein levels [22]. The generating
functions are defined as

Fl(Zv[) = E anl(n9t)7 FZ(ZvI) = E anz(l’l,t),

F3(Z’t) = E an3(l’l,t) and F(Z’t) = 2 an(}’l,t), (4)

n
where

F(z,t) = Fi(z,1) + F5(z,1) + F5(z,1),

p(n,l):PI(”J)+p2(”l»l)+l’3(n’t)s (5)

where F(z,1) and p(n,1) are the total generating function and
total probability density function, respectively.

In terms of the generating functions (4), Egs. (1)—(3) can
be written as

IF,(z,1) oPa(est) — KiFy (o) + K (1 — ) 21D IF(z,1) L ©
ot oz
0F;(tz,t) =k F(z2,0) + kyF5(z,t) — kaF5(z,1) — k Fo(z,1)
+k,(1 - )&FZ(Z L (7)
0z

(W;—(,Z’t) =k Fo(z.1) = kyF3(z,0) + J,(z = 1) F3(z.1)

+k,(1-2)——— Iz, t) (8)
0z

In the steady state (%’?:0, i=1,2,3), addition of Egs.
(6)—(8) results

PHYSICAL REVIEW E 81, 021905 (2010)

5 10 15 20 25 30

n

FIG. 3. (Color online) Plot of p(n) versus n for the activator-
repressor system for b;=16 and four different sets of parameter
values: long dashed curve: s;=1, 5,=6, s5,=10, s,=1; for solid
curve: s,=1, s,=4, s,=13, s,=2; for short dashed curve: s;=2,
$,=6, 5,=5, s;=1; and for dotted curve: s;=1.25, s5,=6, 5,=10,
s4=1.25.
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With the help of the Egs. (5), (6), (8), and (9), F,(z) and
F,(z) can be expressed in terms of F(z). Then, in terms of the
generating function F(z), the Egs. (6)—(8) can be written as

(z= D2F"(2) +{ay(z— 1) = by(z— 1)}F"(2)

+{ay—biby(z— )}F'(z2) - bya;F(z) =0,  (10)

where a;=(1+s+sy+5,+57), b;=
b2=a1 =S84, A3=8154 S :kl/kp’
Sdzkd/kp.

The solution of the Eq. (10) is a generalized hypergeomet-
ric function and is given by

Iyl ks ary=515,+5154+525¢,
S2:k2/kp, sa:k(l/kp’ and

F(z2)=C F 81— 82:81 + &3 — hyshy + hysbi(z = 1)],
(11)

where gl——2+ 2 , &= 2\(b2—1) —4as, hl——2+ >, hy
=5\(a1— 1)>—4a,, C is the normalization constant, and
oF Ja,b,c,d) is the generalized hypergeometric function
(GHF). The normalization constant can be determined easily
from the condition F(1)=1.

Differentiating Eq. (11) n times with respect to z at z=0,
one can easily obtain the expression for the steady-state
probability density function p(n) as

bl (g, + n)I'(gy + n)T'(h)T'(hy)

P = €Ty + Ty + )T (g )T (gp) /81 + 11582

+n;hy+n;hy+n;—by). (12)

The plot of p(n) versus n for different values of s;(i
=1,2,a,d) with b;=16 is shown in Fig. 3. Different curves
in Fig. 3 show that the distributions of protein levels are
bimodal in different parameter regions with s;(i=1,2,a,d)
= 1. The binary response can also be observed in a region of
parameter values with s;(i=1,2,a,d)<1 (not shown). The
binary responses in the activator-repressor system cannot be
observed for s;,5,=2 (simultaneously). Figure 4 shows the
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binary response in protein levels obtained from stochastic
simulation using Gillespie algorithm [23] for the biochemical
reactions shown in Fig. 2 for the rate constants k;=1, k,=06,
k,=10, k,=1, J,=16, and k,=1 (for k,=1, s;=k
(i=1,2,a.,d), and by=17,).

DT (g +n+ 1) (gy+n+ 1)1 (y)

p3(n)=C

nT(hy+n+ D (hy+n+ DC(g)(gy)? 7
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To understand the origin of bimodal distribution in protein
levels in the present scenario we calculate the components of
probability density function p;(n) (i=1,2,3) in the steady
state. Using Eqgs. (9) and (11) one can easily obtain p;(n) and
is given by

(g1 +n+1l;g+n+1;hy+n+1;hy+n+1;-b)). (13)

In the steady state, differentiating Eq. (8) n times with respect to z at z=0 we have

(s4+by)

b'iH—lF(gl +n+ 2)F(g2 +n+ 2)F(I’l1)r(h2)

pa(n) = ——ps(n) - (
S

a

From Eq. (5) we have

pi1(n) = p(n) = py(n) = p3(n), (15)

where p,(n) and p;(n) are obtained from Egs. (13) and (14),
respectively.

Figure 5 shows the plot of total and component probabil-
ity density functions p(n) and p,(n)(i=1,2,3), respectively,
versus 7, the number of proteins, for the rate constants s;
=1, 5,=6, 5,=10, s;,=1, and b, =16 (same as the dotted curve
in Fig. 3). The bimodal distribution in protein levels is
clearly the resultant of three unimodal functions p;(n) (i
=1,2,3) (Fig. 5). This is also true for other bimodal curves
in Fig. 3. From the rate constants used to obtain the bimodal
distributions in Fig. 3, it is clear that the probability of oc-
currence of the gene in the G; and Gj states are higher. Once
it is in the G state, the probability of transition to G, state is
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FIG. 4. (Color online) Plot of p(n) versus n obtained from sto-
chastic simulation using Gillespie algorithm with the rate constants
k=1, k=6, k,=10, k,=1, J,=16, and k,=1 (same as the long
dashed curve of Fig. 3). For k,=1, 5;=k; (i=1,2,a,d), and b;=J,,.

ks ' T(hy +n 4+ 2)U(hy +n+2)T'(g1)T(g2)

>qu(g1+n+2;g2+n+2;h1+n+2;h2+n+2;—b1).

(14)

lower because of the lower value of s;. On the other hand, at
any instant of time, if the gene is in the G, state, there can be
two possibilities: gene can switch either to the active state
(G3) or to the repressed state (G;), depending on the amount
of activators or repressors present in the system, since acti-
vator molecules modulate the transition from G, to G5 state
and repressor molecules modulate the transition from G, to
G, state. Higher values of s, and s, make the G; and G,
states more probable than G, and due to the lower values of
s; and s,, the gene spends most of the time either in the G5 or
G, state. Once the gene is in the G5 state, the transition to G,
state is rare because of the lower value of s;. From the G;
state of the gene, proteins are synthesized with rate constant
J,, and there is enough time for the protein level to reach the
steady value. This gives rise to high protein level in single
cell and the peak in the distribution of protein level at higher
value. This is clearly observed in the curve for p;(n) in Fig.
5. Now if the gene switches suddenly to G, state then protein
level starts to decrease. The protein level keeps on decreas-
ing as long as the gene is in the G, state or switches to the G,
state. If the gene switches to the G, state the protein level
decreases and reaches zero value. This gives rise to low/zero

30

FIG. 5. (Color online) Plot of p(n) and p;(n) (i=1,2,3) versus n
for the rate constants s;=1, s,=6, s,=10, s;=1, and b;=16. The
bimodal nature of the function p(n) is the resultant effect of three
unimodal functions p;(n)(i=1,2,3).
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protein level in a single cell and the peak in the distribution
of protein level occurs at low/zero value. This is observed in
the curve for p,(n) in Fig. 5. From the G, state, the gene can
also switch back to the G5 state and this causes a rise of
protein level again from an intermediate value. Therefore,
there is a finite probability to observe the protein level at the
intermediate value. The curve for p,(n) shows a finite value
at the intermediate region of protein level (Fig. 5).

Rossi et al. examined whether an interplay of transcrip-
tion factors can convert a graded to binary response in gene
expression [12]. They designed an experiment in which the
ratio of activator and repressor molecules that bind to the
same promoter can be modulated by a single inducer mol-
ecule dox. Furthermore, the activator and repressor mol-
ecules bind the overlapping binding sites on the same pro-
moter mutually exclusively. They analyze the graded and
binary responses to the inducer molecule by flow cytometery
in large population of individual cells. Three different cell
populations viz. a dox regulated repressor (“repressor only”),
a dox regulated activator (“activator only”), and both
(“activator+repressor”) were generated in the experiment to
study the role of positive and negative transcription factors.
The flow cytometric analysis of the activator-only and
repressor-only cell populations revealed a graded response
(unimodal distribution) of GFP expression at all dox concen-
trations. The binary response (two distinct subpopulations)
was observed in cells containing both activator and repressor
molecules for a range of intermediate dox concentrations.
With increasing dox level, the increase in the number of cells
with maximal level of GFP and decrease in the number of
cells with low GFP level is observed. Therefore, an all-or-
none (binary) response to the inducer level is observed in the
experiment of Rossi ef al. [12] when a combination of acti-
vator and repressor molecules act on the same promoter mu-
tually exclusively. Moreover, since either factor indepen-
dently produces a graded response, the binary response
observed in cells with both the regulatory molecules is not
due to a dominant effect of one factor over the other but
rather to their combined effect.

Our theoretical analysis of the activator-repressor system
does not explicitly include the activator and repressor num-
bers in the equations but are included in the rate constants s,
and s,. The rate constant s, increases with the increase in
activator amount and s, increases with the increase in repres-
sor amount. Now, let us assume that the numbers of both
molecules can be controlled by a single inducer molecule
like dox, as in the experiment of Rossi et al. [12], so that s,
increases and s, decreases with the increase of dox. Depend-
ing on the presence of regulatory molecules, the gene regu-
latory network can be divided into three categories:
activator-only system (i.e., only activator molecules regulate
the network), activator-repressor system (i.e., activators and
repressors both regulate the network), and repressor-only
system (i.e., only repressor molecules regulate the network).
In presence of only activator molecules the three-state gene
activation process reduces to the two-state one. Random
switching then takes place only between G, and Gj states.
With the two-state gene activation process, the graded and
binary responses are observed for s,,5,>1 and s,,5,<1,
respectively [19]. In one hand, with s,> 1 if s, is varied from
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low to high value then unimodal responses are observed. On
the other hand, with s;,<1, if s, is varied from low to high
value, then first unimodal (for s,<s,), then bimodal (for s,
=y,), and then again unimodal (for s,>s,) responses are
observed [19]. Rossi et al. observed graded responses in
activator-only system at all levels of inducer. To reproduce
the experimental observations of Rossi er al. we choose the
parameter region s,,5,>> 1. Let us assume that initially there
are only activator molecules (with low copy number) activat-
ing the gene transcription and s, is fixed at 1.25. Now, with
the gradual increase of inducer molecules dox in the system,
s, increases and the mean protein level also increases gradu-
ally. The probability distributions always remain graded
(curves in the left column of Fig. 6) because the values of s,
and s, satisfy the condition of unimodal/graded response
(s,,5,>1) for all values of dox [19]. Let us now consider the
same regulatory network (same s;) but with repressor mol-
ecules also present in the system. The gene can now switch
between all three possible states and both the molecules
compete for their binding site to take control of the gene
transcription. Let us assume that initially there are large
numbers of repressors—i.e., s, is large and small number of
activators, i.e., s, is low. With the gradual increase of dox
molecules in the system, s, decreases and s, increases gradu-
ally and simultaneously, i.e., inhibition effect decreases and
activation effect increases simultaneously. This causes the
conversion of unimodal (for low dox, i.e., low s, and high s,)
to bimodal (for intermediate dox, i.e., intermediate s, and s,)
and then again unimodal (high dox, i.e., high s, and low s,)
distribution of protein levels (right column of Fig. 6). The
gradual increase in the inducer level causes a discontinuous
change in the mean protein level. Therefore, the response is
bimodal/binary as the mean protein level is not a continuous
function of inducer but has only low and high values. These
results (Fig. 6) are in qualitative agreement with the experi-
mental observations of Rossi et al. [12] for activator-only
and activator-repressor systems.

Rossi ef al. [12] also observed the graded response when
only repressor molecules regulate the gene transcription. To
reproduce the experimental observation for repressor-only
case in the present scenario, one has to consider the basal
rate of protein synthesis from the unregulated state of the
gene (G,). With the basal rate of protein synthesis, say
Jo(Jy<J,), from the G, state, the generation of graded re-
sponse for repressor-only case is quite similar to that of the
activator-only case discussed above. In the presence of only
repressor molecules in the system, the three-state gene acti-
vation process reduces to the two-state one, i.e., the gene can
switch randomly only between G, and G, states. Repressor
molecules help in transition from G, to G; state. With the
finite basal rate of protein synthesis from the G, state the
response will be graded for s;>1 and for all values of s,
[19]. The initial value of the rate constant s, is large due to
the presence of large number of repressor molecules in the
repressor-only system, the response in this case will be uni-
modal since s;=1.25 and s, is large. Now with the gradual
increase of dox concentration, the rate constant s, decreases
from a high to a low value but the response still remains
graded due to s, being greater than one (s;=1.25). Therefore,
with the basal rate of protein synthesis from the unregulated
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FIG. 6. Distribution of protein levels p(n) versus n in activator-
only system (left column) and activator-repressor system (right col-
umn) for different level of inducer molecules, i.e., for different val-
ues of s, and s,. For the activator-only system s, is kept fixed at
1.25 and s, is varied as mentioned on the top of the figures (figures
in the left column). For the activator-repressor system s; and s, are
kept fixed at 1.25 and 1.25 (s, is same as in the activator-only
system), respectively, and the different curves are drawn for differ-
ent values of s, and s, mentioned on the top of the figures (figures
in the right column). For all curves the relative transcription rate
constant b;=16.
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state the graded response can also be observed for repressor-
only system. But with the basal rate of protein synthesis from
the state G, the derivation of exact analytical expression for
the probability density function of protein levels for the
activator-repressor system is very difficult. Though, with the
help of stochastic simulation using Gillespie algorithm, it can
be shown that the finite basal rate of protein synthesis from
the state G, does not change our results qualitatively. The
qualitative nature of the curves drawn in Figs. 3 and 6 will
remain unchanged with the basal rate of gene expression
from G, taken into account.

III. DISCUSSION

In this paper, we have studied a gene regulatory network
where the positive and negative transcription factors regulate
the gene transcription mutually exclusively. Both the mol-
ecules compete for their respective binding sites on the DNA
to take control of the network (Fig. 1). The activator-
repressor system is represented by a simple stochastic model
where gene can be in three possible states viz. inactive/
repressed, unregulated, and active. An exact analytical ex-
pression for the probability density function of the protein
levels in the steady state is derived and is a GHF [Eq. (12)].
From the GHF, the bimodal distribution in protein levels is
observed in a wide region of the parameter values. From the
theoretical analysis, the experimental observation of Rossi ef
al. (i.e., the regulation only by activator molecules produce
the graded response in the protein levels, whereas binary
responses are observed when both the activator and repressor
molecules regulate the gene transcription by binding the pro-
moter mutually exclusively) can be reproduced very easily.
Here we have considered only the parameter region s;(i
=1,2,a,d)=1 (Fig. 3). The binary response in protein level
is more prominent for s;(i=1,2,a,d)<1 (not shown). This
region is excluded from the present analysis because with
si(i=1,2,a,d) <1, the binary response can also be observed
for two-state activator-only system [19]. But the experiment
of Rossi er al. [12] observed only graded response when only
activator molecules regulate the gene transcription. This ex-
perimental observation along with the theoretical prediction
of graded response in gene expression [19] helps us to
choose the parameter region for theoretical analysis. Rossi et
al. observed the graded response also for repressor-only sys-
tem. Here we have not considered the repressor-only case
because this requires a basal rate of protein synthesis from
the unregulated (G,) state. The basal rate of protein synthesis
from the unregulated state brings difficulties in the analytical
tractability of the model. In the presence of the basal rate of
protein synthesis from the unregulated state, it is very diffi-
cult to express the components of the generating functions
Fi(z)(i=1,2,3) in terms of the total generating function F(z)
and therefore the chemical master equations (CMEs) cannot
be expressed by a single differential equation like Eq. (10).
Again, the reduction of the CME into a single differential
equation does not lead to the exact solution of CME because
of the unavailability of the analytical solution of the higher-
order differential equation. This shows the limited scope and
applicability of the generating function technique used here
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to solve the CME. The difficulty increases when the regula-
tory networks consist of nonlinear feedback loops.

In the present analysis of activator-repressor system, we
have combined the transcription and translation into a single
step process. In the process of transcription mRNAs are pro-
duced from the active gene and then mRNAs are translated
into proteins. Therefore, the steady-state probability distribu-
tion [Eq. (12)] derived here gives the correct description for
mRNAs. The distribution in protein levels does not follow
the bimodal mRNA distribution when the protein lifetime is
longer than that of mRNA [24]. Despite the above limitations
of the stochastic model, it contains important features neces-
sary for an explanation of the binary response in an activator-
repressor system and is graded in activator only system as
observed in experiment [12]. The exact analytical result with
three gene states is important and useful especially in the
eukaryotic system. The gene activation of the complex eu-
karyotic system consists of many unknown number of rate
limiting steps (chromatin remodeling, assembly of preinitia-
tion complex, etc.). The simplification of the complex gene
activation process by the two-state one is the first approxi-
mation of the complicated biological process. The “three-
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state” assumption may be considered as the second approxi-
mation of the stochastic gene activation-deactivation process.

The present analysis of the origin of binary responses in
three-state model may be helpful to explain the bimodal dis-
tribution in transcriptional silencing [25]. In transcriptional
silencing, Sir proteins (Sir 2-4) are the key structural com-
ponents of silenced chromatin and under their regulation the
silencer can be in two possible states: repressed and de-
repressed. The silencer helps to assemble the Sir protein
complex. This process of assembling is not a single step
process but rather consists of several reversible biochemical
steps. The intermediate steps between the repressed and de-
repressed states of the chromatin make the effective rates of
transitions very slow and these slow rate of transitions ulti-
mately may lead to the bimodal distribution of protein levels
from reporter gene.
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